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Scaling and river networks: A Landau theory for erosion
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We propose a coarse-grained theory for the formation of a river network in the form of a Langevin equation
for the erosion of the landscape coupled to a conservation law for the surface water flow. We claim that this is
the universal form for large-scale behavior. We show by simulations of a discrete model that represents the
same dynamics that the slope-area law, the basin size distribution law, and Horton’s laws agree with real rivers.
We discuss the relationship to optimal channel networks and to self-organized criticality.
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Natural river networks have attracted a good deal of atRg=N,/N,.; and the length rati&® =L, ,,/L,, are inde-
tention in the physics and geophysics communities, and pendent ofw. The fractal dimensiofl0] of the network is
large number of models have appeared that attempt to givgiven by d.In(Rg)/In(R), whered, is the fractal dimension
an explanation for the remarkable statistical properties obf the individual streamgl1]. For many networks the values
these systemld—4]. The spirit of much of this work isto try Rg~4R,~2 are found[9] along with d.~1.1 — 1.2
to abstract from the details of the geological processes F11,12. Our model will turn out to obey all these laws.
simple description that will account for the large-scale, We start with the observation that landscapes seem to
coarse-grained properties of the network. In this paper wéave scale invariandd 3]: they are close to being self-affine
present a model of this type. Our model is similar to that offractals. This means that if we consider a topographic map
Inaoka and Takayadi2] and of Sinclair and Ball3] but also  and rescale the coordinate®n the map so that—br, and
has significant differences. Our theory is intended to serve age height differences bxh—b*Ah, wherea<1 we get a
a unified model of erosion and is based on a continuunstatistically identical landscape. Since erosion by rivers are
formulation that we believe to capture the important featureamong the processes that form landscapes, the scale invariant
that survive on coarse graining. If we are correct, much oktatistical properties of mature river networks should have a
the previous work will have the same large-scale propertieglose connection with the scale invariance of the landscape.
as what we present here. Now let us focus on the erosion process, and make some

The remarkable statistical properties of river basins havgimplifying assumptiongwhich could be easily modifigd
been known for some timkb,6]. We will focus on a few of we assume that the only source of water is from a uniform
the laws that we consider to be central, and that we haveainfall and neglect underground flows. The land is geologi-
verified for the model to be presented. The most important otally uniform and initially structureless. We also assume that
these is the slope-area law, which was derived from fieldhe material washed away by the river is carried entirely to
observationg7]: the slope of the river bed scales with a the sea, and is not redeposited. This is the limit of slow

power of the basin are@: erosion and fast flows.
To formulate the coarse-grained erosion law we use an
s~Q7 ¢, (1)  argument that is standard in the theory of random rough

surfaceg 14] and that, in turn, is based on the classic work of

where the value of the exponefit=0.5 has been carefully Landau and Ginzbur§l5]. We note first that the absolute
measured[7]. The distribution of the drainage area also height of the landscape should play no role in the local ero-
obeys a power lawP~Q~#, whereP is the fraction of the  sion. Thus we write
landscape for which the drainage area is larger than a given ) )
value Q. The value of the exponent j8~0.43[4,8]. dhlgt=F(Vh,V*h,|Vh[%, ...)+n(r,1), )

The best known of the statistical properties are Horton’gN
laws[9], which are relations between the number and Iengtr}
of different parts of the network. They say, in effect, that the

gtrrz?]rlg? sf((:)r:emm: fé?rg?gginbr?r?:zlt?g dﬂ]:gdil' ecr:]ggsc')??;ethegradients: it is the result of averaging over local fluctuating
9 ., up rocesse$l6]. Now we are interested in large-scale statisti-

streams are order 1; when two or more streams of the sanle : '
> . ) .cal properties. When we rescale a self-affine surface the gra-
order join, the order increases by one; when streams of di

ferent order join, the higher stream order prevailet N, dloevr\:(tasrdseecrgggseThus we should be able to expafidin a
denote the number of streams of orderandL , their aver- P '

here n(r,t) is a noise term that accounts for small scale
andom processes.
Further, we argue that the functioralis analytic in the

aged length. Horton’s laws state that the branching ratio F=A+B-Vh+C|Vh|?+DV?h+--- (3)
We can interpret these terms. The first is a uniform
*Electronic address: ellak@umich.edu change in height that might correspond to geological uplift.
"Electronic address: Isander@umich.edu For our case we can sét=0. The second term involves a
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vector B, which gives a preferred direction of flow. Since kind of steady state is one in which the erosion is uniform
local flows have no preferred directidexcept downh we  €verywhere. If we neglect smoothing and nofas we will
must setB=0. The third term corresponds to erosion pro-do from this point op we can write
portional tos?, the squared slope. This sort of law has been dhlat=const —cg|Vh|? @)
considered in the literaturel 7] along with others. It has a '
special significance since it is the lowest-order term, and thughich amounts to havingx 1/qY/2, that is, exactly the slope-
the dominant one when we rescale. The last one that we keefea law of Eq(1). If this state is attained it will have the
can be thought of as sedimentation and smoothing: it roundshserved slope-area law in a natural way, and is certainly
hilltops and fills valleyd18]. The equation for the landform stationary[23]. It remains to show that featureless land-
is scapes tend towards this state, and that it is stable. To inves-
Ihlat=C|Vh|2+DV2h+---+ g(r,t). (4)  tigate this question we turn to numerical solutions of a dis-
crete model, which is an approximate realization of our set of
This is the Kardar-Parisi-Zhan@gKPZ) equation[19], which  equations.
has been extensively studied. There has been a previous ap-Our discrete model is very similar to that of Ref&,3]
plication of this equation to river network&0]. In this form  (though our boundary conditions are noWe consider a
it is clear that the equation can generate self-affine landtriangular lattice of mesh points that represents our land-
scapes. The higher-order terms represented by the dots aseape. Every point has two variables: the heighand the
irrelevantin the sense that they disappear upon rescaling. flow g. The water flows on the bonds of the lattice, and every
The other ingredient in our theory is the water. We definenode has one outflowing bond, the one that is the steepest. At
g as the flux of water per unit width of landscape. Our as-every time stegdoing parallel updateghe drainage area is
sumptions(uniform rainfall and no ground wateimply that  calculated from the landscape, and the height is decreased
qxQ, whereQ is the basin area. The vectqrsatisfies the according to the erosion ruleh= —|Vh|?qAt. The gradient
following: is measured on the outflowing edge. If there are no lakes in
V.q=R, (5)  the initial height distribution(no nodes with all neighbors
higher than itse)f then using sufficiently smalkt, no lakes
where R is the rainfall per unit area. Further, water runsare created. Thus we were able to ignore the special treat-
downhill. Thus, ment of lakes, which are generally present only in the initial

~ stages of the erosion process, and do not affect the stationar
q=a/g=—Vh. 6) sta?e. P Y

Finally, we insist that there is no erosion in the absence of Initiaﬂy tr_1e landscape is a hillside with a little noise:
water. That means that the coefficigtof the erosion term  N0%.Y,t=0)=So(y +dyR(x,y)), wherey is the north-south
must be a function of, which vanishes ag— 0. There is no coordinate sy is the initial slope of the hillsider( ) is uni-

particular reason whi should be analytic, so we propose form random number from0,1], anddy is the lattice con-
on the basis of simplicity an erosion rate linear in the flow:Stant. These initial conditions ensure the absence of lakes.

__ ; ; The boundary conditions are periodic in the east-west direc-
C= —cq. Putting this all together we get
q g g ¢ tion, infinite wall on the north sidéthis is the upper end of

ohlgt=—cq|Vh|?+DV?h+ 5(r,t). (7)  the hillsidg, and outflowing on the south side. The slope of
the outflowing edges on the outflowing side are taken to be
Equations(5)—(7) constitute our Landau theory. fixed. With these boundary conditions the stationary state is

Formulations similar to this one have been proposed besuch that the whole landscape erodes with the same rate ev-
fore. A theory of this type was given by Smith and Brether-erywhere. We can think of this as representing a plateau that
ton[21] some time ago, and discussed by Tarbatoal. [6] has been upthrust and that starts to erode. This boundary
in the context of stream initiation. Our equations differ from condition is in contrast with fixedheightat the outflowing
theirs in that they conserve sediment so that the right-handdge used by other authdr,3]: in that case the stationary
side of Eq.(7) is of the form —V-[§q™s"]. Our Eq. (7) state occurs when nearly all of the material has been washed
correspondgup to an irrelevant terinto m=n=2. The re- away and a different slope-area law ho|@3.
cent work of Sinclair and Ball3] proposes a set of equations  In our simulations we find that the initial stages of river
like ours with a term of the forng2s® of which our equation formation corresponds to rivers valleys that start at the bot-
is a special cas€As we will see, our solution to these equa- tom edge and elongate, compete, and eventually reach a sta-
tions is quite different from that of Ref3].) tionary state with one large river. Figure 1 depicts a typical

Because the landform generated by Ef).is coupled to  stationary river network. Taking the lattice constant to be
the water flow(which changes with the landscagbe solu-  unit length, the slopes at the outflowing edge also one, and
tions to the coupled set are quite unlike those of the ordinaryneasuring the discharge as the number of the nodes in the
KPZ equation. With suitable boundary conditions, the land-basin area, the rivers reach the stationary state at around unit
scape will approach a dynamic steady state where the rivdime. The corresponding landscape is shown on Fig. 2.
network and the landform do not change. This steady state is The following statistical results were obtained by averag-
a feature of many of the models that have been proposed. ihg 20 independent simulations of size 286866. As ex-
corresponds to the simple statement that large rivers are lormected, the slope-area lagFig. 3) holds with exponent
lived [22]. 1/2+10°°. The great accuracy is understandable if we ac-

To understand the steady state we use the approach oépt that the slope-area law is an attractive fixed point of the
Smith and Brethertoi21] who point out that an obvious dynamics: if any node does not satisfy the law, it will erode
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’ FIG. 3. The slope-area law obtained by the simulation. The
exponent isf=1/2+10"8. The great accuracy is the consequence
of the attractive nature of the fixed point of the dynamics.

FIG. 1. A typical stationary river network on a 28@56 trian-
gular lattice. For better visualization, the stream is drawn with line-
width proportional to the square root of the discharge. Only streamid€a that rivers areptimal channel network€OCN's): con-
with dischargeq=10 are displayed. nected branching patterns that minimize a functional that

represents dissipation. It is well known that for systems far
faster or slower than its neighbors towards a height that safrom equilibrium no functional exists in general that gives
isfies the law. The cumulative distribution of the basin area ishe dynamics in the usual sense thtdt= 6F/ éh. If there
depicted on Fig. 4. The value of the exponent iswere such a functional we could understand OCN'’s by not-
B=0.45+0.02. Horton’s laws are shown on Fig. 5, the ing thatoh/Jt=0, the stationary state, would occurAfis at
branching ratio is Rg=4.0+0.2, the length ratio is a minimum. However, our equations are not of this form.
R, =2.3+0.1. The dimension of the individual streamsis The solution to this quandry was given by Sinclair and
measured12] from the scaling of the average river length Ball [3] who point out that a functional can exist that gives
with the system sizeél;)~L% (wherel; is the distance of the stationary state, but not the complete dynamics. It is easy
sitei from the root on the netwojkUsingL =64, 128, and to see that the height functidnand flowq that minimize
256, we obtained.= 1.05, giving network fractal dimension
1.85+0.15. This value of the fractal dimension is somewhat _ 12y 42
lower than the expected 2 for space filling networks. The Fh.al f{h(V a-R)+q"d ©
probable explanation is the low value @f: in our hillside
initial conditions the rivers are “stretched” in north-south obey both Eq(5) and Eq.(1). However this variational prin-
direction, making them more linead{ closer to J. ciple does not produce the dynamidsq. (7)]. There is no

There is another approa¢h,24] to the problem of river free energy that would produce the dynamics of the initial
networks that appears quite different from ours, namely, thétages of the erosion.

10

FIG. 4. The cumulative basin area distributiBgQ) (the frac-
tion of the landscape for which the drainage area is larger than a
FIG. 2. The landscape created by the river of Fig. 1. The graygiven Q). The value of the exponen§=0.45+0.02 agrees with
scale is proportional to height, with white corresponding to high. Ref. [4].
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10° — : : : ‘ . : . The events in our system that are most like avalanches are
river basin capture: when part of the basin area gets con-
1102 nected to another river. These change a macroscopic part of
the flow pattern and are fast and nonlocal like avalanches,
and they are essential during the evolution of the river net-
work. But they completely disappear from the stationary
© state, and are not dominant for the formation of the large-
110’ scale structures. In SOC the avalanches are the only means to
transmit information between the different parts of the sys-
tem, and dominate any large-scale structure. In our case it is
the river network itself, while eroding slowly, which trans-
mits information.
] s 5 4 5 & 7 8 O In summary, our treatment of river networks differs from
® earlier work in that it emphasizes the properties of the dy-
FIG. 5. Horton's laws for the branching ratioOp:  hamics which should survive coarse graining. We make a
Rg=4.0+0.2, and the length rati¢s): R, =2.3+0.1. With stream  Strong claim, that the dynamics given by E¢§)—(7) is a
dimension d,=1.05, the fractal dimension of the network is Universal theory for the large-scale structure. We have shown
D=d.In(Ry)/IN(R)=1.85+0.15, somewhat lower than the ex- that, at least, there is a reasonably satisfactory agreement
pected space filling 2. with the empirical satistical laws that are gleaned from field
observations of real rivers. We hope that generalizations of

. our work to allow ground water, storms, etc., could shed
In the erosion process there are sudden large-scale evernt

that have some similarity with the avalanches of self- Sme light on how these processes affect landscapes, and

organized criticalSOQ systemd25]. In fact, there is a for- gig:”(rj] elge?ﬁ ;nszggsgﬁzt oﬁ‘i‘:lsc?c’) c?;ve useful information on, for
mulation of SOC dynamic26] that resembles ours in that it bi€, '

involves a Langevin-like equation whose parameters are a We would like to thank F. Mackintosh, P. Olmsted, and

dynamical variablécf. C= —cq). However, our theory does D. Turcotte for useful discussions. This work was supported
not represent SOC processes, though there are similaritieley DOE Grant DE-FG02-95ER45546.
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